Wireless LANs I Chapter 6 Panko and Panko

Wireless LANs I Chapter 6 Panko and Panko

Wireless LANs I Chapter 6 Panko and Panko Business Data Networks and Security, 9th Edition 2013 Pearson 6.1: Perspective Chapter 5 Ethernet wired switched LANs Switched, so Require standards at Layer 1 (physical) and Layer 2 (data link) Physical and data link layer standards are almost always OSI standards.

2013 Pearson 2 Perspective Chapters 6 and 7 Wireless LANs (WLANs) Also require standards at Layers 1 and 2 So also are OSI standards

Wired versus Wireless LANs Companies have been spending more on wireless LANs than wired LANs since 2008. 2013 Pearson 3 6.1: 802.11 Wireless LAN Technology 802.11 is the dominant wireless LAN (WLAN) Technology

Standardized by the 802.11 Working Group Large 802.11 WLANs use multiple access points to cover large areas 802.11 2011 Pearson 4

6.2: 802.11 Wireless LAN (WLAN) Operation The wireless access point connects the wireless client to the wired Ethernet LAN. 2013 Pearson 5 6.2: 802.11 Wireless LAN (WLAN) Operation The LAN connection is needed to give clients access to

servers and Internet access routers on the wired LAN. 2013 Pearson 6 6.2: 802.11 Wireless LAN (WLAN) Standards Speeds and Distances to Devices Speeds up to 300 Mbps, but usually 10 to 100 Mbps Distances of 30 to 100 meters

2013 Pearson 7 6.3: Electromagnetic Wave Optical fiber transmission is measured in terms of wavelength. Typical data LAN frequencies are 500 MHz to 10 GHz 2013 Pearson

8 6.4: Omnidirectional and Dish Antennas 2013 Pearson 9 6.4: Omnidirectional and Dish Antennas Questions: What type of antenna do mobile phones use? Why?

2013 Pearson 10 6.5: Wireless Propagation Problems 1. Wireless transmission has many propagation problems. 2013 Pearson

2. Electromagnetic Interference (EMI) is unwanted power at the same frequency from other devices. 11 6.5: Wireless Propagation Problems

Shadow zones are places the signal cannot penetrate because of obstacles in its path. Shadow zones, also called dead spots, grow worse as frequency increases. 2013 Pearson 12 6.5: Wireless Propagation Problems The signal strength spreads out as the surface of a sphere. This means that its strength falls as

(1/r22), where r is the radius. If you double the distance, you only get the signal strength 2013 Pearson 13 6.5: Wireless Propagation Problems Radio signals spread out in a sphere. S = signal power, r = range (distance) or radius

If the signal strength at 10 meters is 9 milliwatts (mW), how strong is it at 30 meters? S2 = S1 * (r1/r2)2 S2 = 9 mW * (10/30)2 S2 = 9 mW * (1/3)2 S2 = 9 mW * (1/9) S2 = 1 mW 2013 Pearson 14 6.5: Wireless Propagation Problems

Your turn. If the signal strength at 5 meters is 48 mW, how strong is it at 20 meters? 2013 Pearson 15 6.5: Wireless Propagation Problems Signal is absorbed by the air and water. Note that there are two types of attenuation. Note that this is different than shadow zones.

2013 Pearson 16 6.5: Wireless Propagation Problems Direct and reflected signals may interfere. Most serious propagation problem at WLAN frequencies. 2013 Pearson 17 6.6: Multipath Interference

If the two waves are out of phase, they will negate each other, giving no signal. 2011 Pearson 18 6.5: Wireless Propagation Problems Recap 2013 Pearson

19 6.7: The Frequency Spectrum, Service Bands, and Channels 2013 Pearson 20 6.7: The Frequency Spectrum, Service Bands, and Channels 2013 Pearson

21 6.7: The Frequency Spectrum, Service Bands, and Channels 2013 Pearson 22 6.9: Channel Bandwidth and Transmission Speed Signal Bandwidth Figure 6-2 shows a wave operating at a single frequency.

However, most signals are spread over a range of frequencies (Figure 6-9). 2013 Pearson 23 6.8: Channel Bandwidth and Transmission Speed Channel Bandwidth Channel bandwidth is the highest frequency in a channel minus the lowest frequency. An 88.0 MHz to 88.2 MHz channel has a

bandwidth of 0.2 MHz (200 kHz). Higher-speed signals need wider channel bandwidths. 2013 Pearson 24 6.8: Channel Bandwidth and Transmission Speed Shannon Equation

C = B [Log2 (1+S/N)] C = Maximum possible speed in the channel in bits per second Not the actual speed, although the actual speed may be close B = Bandwidth in Hz S/N = Signal-to-Noise Ratio (SNR)the signal power divided by the average noise power Better S/N ratios produce fewer errors. 2013 Pearson 25

6.8: Channel Bandwidth and Transmission Speed Shannon Equation C = B [Log2 (1+S/N)] Note that doubling the bandwidth doubles the maximum possible transmission speed. Multiplying the bandwidth by X multiplies the maximum possible speed by X. Wide bandwidth is the key to fast transmission. 2013 Pearson

26 6.8: Channel Bandwidth and Transmission Speed Shannon Equation C = B [Log2 (1+S/N)] Increasing S/N helps slightly, but usually cannot be done to any significant extent 2013 Pearson

27 6.8: Channel Bandwidth and Transmission Speed Broadband and Narrowband Channels Broadband means wide channel bandwidth and therefore high speed. Narrowband means narrow channel bandwidth and therefore low speed. Traditionally, narrowband is below 200 kbps;

broadband is above 200 kbps. 2013 Pearson 28 6.8: Channel Bandwidth and Transmission Speed The Golden Zone Most organizational radio technologies operate in the golden zone in the 500 MHz to 10 GHz range. Golden zone frequencies are high enough for

there to be large total bandwidth. At higher frequencies, there is more available bandwidth. Golden zone frequencies are low enough to allow fairly good propagation characteristics. At lower frequencies, signals propagate better. 2013 Pearson 29 6.10: Line-of-Sight 2013 Pearson

30 6.11: Licensed and Unlicensed Radio Bands Licensed Radio Bands If two nearby radio hosts transmit in the same channel, their signals will interfere. Most radio bands are licensed bands, in which hosts need a license to transmit. The government limits licenses to reduce interference. Television bands, AM radio bands, and so on are licensed.

In cellular telephone bands, which are licensed, only the central transceivers are licensed, not the mobile phones. 2013 Pearson 31 6.11: Licensed and Unlicensed Radio Bands Unlicensed Radio Bands Some bands are set aside as unlicensed bands. Hosts do not need to be licensed to be turned

on or moved. 802.11 operates in unlicensed radio bands. This allows access points and hosts to be moved freely. 2013 Pearson 32 6.11: Licensed and Unlicensed Radio Bands Unlicensed Radio Bands However, there is no way to stop interference

from other nearby users. Your only recourse is to negotiate with others. At the same time, you may not cause unreasonable interferencefor instance, by transmitting at excessive power. 2013 Pearson 33 6.12: 802.11 in the 2.4 GHz and 5 GHz Unlicensed Bands The 2.4 GHz Unlicensed Band

Defined the same in almost all countries (2.400 GHz to 2.485 GHz) Commonality reduces radio costs Propagation characteristics are good 2013 Pearson 34 6.12: 802.11 in the 2.4 GHz and 5 GHz Unlicensed Bands The 2.4 GHz Unlicensed Band Potential interference from microwave ovens,

cordless telephones, and so on For 20 MHz 802.11 channels, only three nonoverlapping channels are possible Channels 1, 6, and 11 This creates mutual channel interference between nearby access points transmitting in the same 20 MHz channel 2013 Pearson 35 6.12: 802.11 in the 2.4 GHz and 5 GHz Unlicensed Bands

The 5 GHz Unlicensed Band 5 GHz radios are expensive because somewhat different frequency ranges are used in different countries. Shorter propagation distance than in the 2.4 GHz band because of higher frequencies. Deader shadow zones than in the 2.4 GHz band because of higher frequencies. 2013 Pearson 36 6.12: 802.11 in the 2.4 GHz and

5 GHz Unlicensed Bands The 5 GHz Unlicensed Band More total bandwidth than 2.4 GHz, so between 11 and 24 non-overlapping 20 MHz channels. Allows different access points to operate on non-overlapping channels. Some access points can operate on two channels to provide faster service. 2013 Pearson 37

6.13: Co-Channel Interference in 2.4 GHz The 2.4 GHz Unlicensed Band Difficult or impossible to put nearby access points on different channels 2013 Pearson 38 6.12: 802.11 in the 2.4 GHz and 5 GHz Unlicensed Bands

What is the main advantages of 2.4 GHz operation? What is the main advantage of 5 GHz operation? 2013 Pearson 39 6.14: Spread Spectrum Transmission

Spread Spectrum Transmission You are required by law to use spread spectrum transmission in unlicensed bands. Spread spectrum transmission reduces propagation problems. Especially multipath interference Spread spectrum transmission is NOT used for security in WLANs. 2013 Pearson 40 6.15: Normal vs Spread Spectrum

Transmission 2013 Pearson 41 6.15: Normal vs Spread Spectrum Transmission 2013 Pearson 42 6.16: Orthogonal Frequency Division Multiplexing (OFDM)

2013 Pearson 43 6.17: WLAN Frames and Packets Sender puts a packet for the destination host into an 802.11 frame, then sends the frame wirelessly to the access point. 2013 Pearson 44

6.17: WLAN Frames and Packets The 802.11 frame has the wrong frame format to travel over an 802.3 Ethernet network. The switches and destination host would not know what to do with it. The access point removes the packet from the 802.11 frame and discards the frame. 2013 Pearson 45 6.17: WLAN Frames and

Packets The access point encapsulates the packet in an 802.3 frame and sends this frame on to the destination host via Ethernet switches. 2013 Pearson 46 6.17: WLAN Frames and Packets The Wired Ethernet Network is called the Distribution System The server removes the packet from the 802.3 frame.

2013 Pearson 47 6.17: WLAN Frames and Packets Does the 802.11 frame travel all the way to the destination host? Why or why not? Does the IP packet travel all the way to

the destination host? 2013 Pearson 48 6-18: Basic Service Set (BSS) An access point and its wireless hosts Basic Service Set ID (BSSID) is the name of the access point/network

2013 Pearson 49 6-18: Extended Service Set (ESS) Collection of access points that all have the same SSID 2013 Pearson 50

6-18: Roaming 2013 Pearson All access have the points must same SSID 51 6.19: Transmitting in a Single Channel

2013 Pearson 52 6.20: CSMA/CA+ACK CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) Sender listens for traffic 1. If there is traffic, waits 2013 Pearson 53

6.20: CSMA/CA+ACK CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) 2. If there is no traffic: 2a. If there has been no traffic for less than the critical time value, waits a random amount of time, then returns to Step 1. 2b. If there has been no traffic for more than the critical value for time, sends without waiting. This avoids collision that would result if hosts could transmit as soon as one host finishes

transmitting. 2013 Pearson 54 6.20: CSMA/CA+ACK ACK (Acknowledgement) Receiver immediately sends back an acknowledgement. If original sender does not receive the acknowledgement, retransmits using CSMA. CSMA/CA plus ACK is a reliable protocol.

CSMA/CA+ACK is reliable because wireless transmission has high error rates. Ethernet has lower error rates and so can be unreliable. 2013 Pearson 55 6.21: RTS-CTS 2013 Pearson 56

6.21: RTS-CTS 0 0 2013 Pearson 57 Comparison CSMA/CA is Mandatory It is the default MAC method. It is more efficient than RTS/CTS.

RTS/CTS Is usually optional. Is good if two or more client stations cannot hear each other. It will prevent them from transmitting at the same time. 2013 Pearson 58 6-22: 802.11 Standards

The 802.11 Working Group has produced several transmission standards. Existing Standards 802.11g 802.11n In Development 802.11ac 802.11ad

2013 Pearson 59 6.22: 802.11g and 802.11n Characterist 802.11g ic Remarks Todays dominant 802.11 standard in terms of installed base. 2013 Pearson

802.11n Todays fastestgrowing 802.11 standard. However, not all 802.11n equipment operates in both bands. 60 6.22: 802.11g and 802.11n Characteristic 802.11g Spread

OFDM spectrum method Unlicensed band 2.4 GHz 802.11n OFDM Channel Bandwidth 40 MHz but may drop back if there is interference

2013 Pearson 20 MHz 2.4 GHz. And 5 GHz if dual-band 61 6.22: 802.11g and 802.11n Characteristic 802.11g Number of 3 @ 20 MHz overlapping

channels (varies by country) 802.11n In the U.S. 2.4 GHz: 3 @ 20 MHz 1 @ 40 MHz 5 GHz: 12 @ 40 MHz 2013 Pearson 62

6.22: 802.11g and 802.11n Characteristic 802.11g 802.11n Rated Speed 54 Mbps 100 Mbps to 600 Mbps Actual throughput, 3 m

25 Mbps Closer to the rated speed Actual throughput, 30 m 20 Mbps Closer to the rated speed 2013 Pearson 63

6.22: 802.11g and 802.11n Characteristic Rated Speed Typical Maximum Distance 2013 Pearson 802.11g 54 Mbps 30 m (100 ft)

802.11n 100 to 600 Mbps 300 Mbps for most equipment 70 m (230 ft) 64 6.22: 802.11g and 802.11n Characteristic MIMO? 802.11g No

802.11n Yes MIMO is multiple input/multiple output Allows a sender to transmit two or more signals in the same channel simultaneously Uses multipath transmission as a benefit instead of a problem 2013 Pearson 65 6.23: MIMO

Access point transmits two signals in the same channelone from Antenna A and one from Antenna B. These are called spatial streams. 2013 Pearson 66 6.23: MIMO The two signals arrive at different times at the two receiving antennas. Time differences allow them to be separated and understood. 2013 Pearson

67 6.23: MIMO (Multiple Input/Multiple Output) MIMO Benefits MIMO brings higher speeds because it can send more information in a channel. MIMO also brings longer propagation distances for technical reasons we will not discuss. 2013 Pearson

68 802.11ac Standard is under development Products based on the draft standard are beginning to come to the market Uses OFDM in the 5 GHz band

Channel bandwidth is 80 MHz or 160 MHz 6 channels at 80 MHz in the United States 3 channels at 160 MHz in the United States 2013 Pearson

69 802.11ac Maximum Number of Spatial Streams 802.11n: 4 802.11ac: 8 However, most products contain fewer antennas and so fewer spatial streams 2013 Pearson 70

802.11ac Rated Speeds 433 Mbps to 6.9 Gbps, depending on channel bandwidth and the number of spatial streams 867 Mbps and 1.3 Gbps will probably be common initially So called Gigabit 802.11 2013 Pearson 71

802.11ad Gigabit speed but for very short distances Operates in the 60 GHz band (not 2.4 or 5 GHz) Channel bandwidth is 2.1 GHz 3 possible channels in the United States, 4 in Europe Uses MIMO, beamforming and multiuser MIMO (later) 7 Gbps Replaces in-room cables Probably not able to work between rooms 2013 Pearson

72 6.24: Beam Forming Beamforming allows an access point to focus its transmissions and reception 2013 Pearson 73 6.24: Beam Forming Multiuser MIMO allows two wireless hosts to transmit at the same time.

2013 Pearson 74 Multiuser MIMO Defined in 802.11n, but a single method was not defined Defined in 802.11ac, and there is a single standard, so adoption is more likely

2013 Pearson 75 6.25: Speed, Throughput, and Distance Rated speed versus Throughput Total throughput is substantially lower than rated speedsometimes 50% less In newer 802.11 standards, throughput is closer to the rated speed

Throughput is aggregate throughput shared by all wireless hosts using an access point But only by the hosts that are actively trying to send and receive at the moment 2013 Pearson 76 6.25: Speed, Throughput, and Distance Throughput versus distance As distance increases, signals get weaker

Wireless hosts must use slower but more reliable transmission processes This reduces individual throughput because frames take longer to send 2013 Pearson 77 6.25: Speed, Throughput, and Distance Speed Killers An 802.11b device connecting to an access point hurts all hosts

Stations far away will transmit more slowly, taking aggregate throughput from other devices 2013 Pearson 78 6.26: Trends White Space Operation In the United States, broadcasters were required to vacate the UHF spectrum Some UHF channels have been auctioned off Unused channels in various bands (called white

space) will be made available for unlicensed use May be used for WLAN operation, but may be reserved for other purposes 2013 Pearson 79 6.26: Trends Impending Spectrum Scarcity Traffic has been growing explosively Governments have made many more service

bands available However, traffic may outstrip capacity This spectrum scarcity will increase prices and may ultimately limit growth 2013 Pearson 80 6.27: 802.11 Wi-Fi Direct Wireless hosts communicate directly, without using an access point. Standard created by the Wi-Fi Alliance, not by the 802.11 WG

2013 Pearson 81 6.28: Wireless Mesh Network There is no Ethernet network (distribution system) Frames are forwarded by access points and wireless hosts 2013 Pearson 82 6.28: Wireless Mesh Network

Mesh networks are governed by 802.11s It is not a mature standard 2013 Pearson 83 Where We Are Going? Chapter 7 Wireless LANs II. More on 802.11 networks, including security and management.

Other local wireless standards, including Bluetooth and near field communication 2013 Pearson 84 2013 Pearson 85

Recently Viewed Presentations

  • Stephen G. Peters

    Stephen G. Peters

    DEPOSITS WITHDRAWALS Seek First to understand Seek first to be understood Keeping promises Breaking promises Kindness, courtesies Unkindness, discourtesies Clarifying expectations Violating expectations Loyalty to the absent Disloyalty Apologies Pride, conceit, arrogance Being open to feedback Rejecting feedback Define reciprocal...
  • March 2011 Contents Radio Summary 2010 - Useful

    March 2011 Contents Radio Summary 2010 - Useful

    The second Digital Radio Industry Report was released by CRA in March 2011. Visit digitalradioplus.com.au to download. Radio in 2010 Summary - Digital * In the market supply chain (chip maker, manufacturer, and retailer) supported by GfK sales data, and...
  • Social Studies

    Social Studies

    Social Studies. Unit 2. Lesson 1 - Geography. The study of the Earth and the ways that people use it. Landforms. The surface of the Earth has many shapes and each shape is a landform! island. Land that is surrounded...
  • Compatibility Testing Compatibility testing is performed to determine

    Compatibility Testing Compatibility testing is performed to determine

    The Lewis System. The Lewis system antigens, Lea. and . Leb. ... For example, if the antibody is . anti-K, RBC of the appropriate ABO and Rh type will be tested with anti-K anti-serum and only K-negative red cells will...
  • Title of session

    Title of session

    Aims of the session. Discuss the Initial Audit against the Teachers' Standards. Give you information about personal tutor role and meetings. Discuss relevant paperwork
  • Core Training in The Matrix Model of Outpatient Treatment for ...

    Core Training in The Matrix Model of Outpatient Treatment for ...

    Triggers and Cravings. Pavlov's Dog. Pavlov would feed dogs and ring a bell at the same time. The dogs would see and smell the food which would then stimulate, or trigger, their lower brains ( the autonomic nervous systems) causing...
  • Religious Land Use and Institutionalized Persons Act Claims

    Religious Land Use and Institutionalized Persons Act Claims

    City of Holly Springs Miss. (5th Cir. 2012) Any . Assembly. See, Midrash Sephardi, Inc. v. Town of Surfside (11th Cir. 2004) Strategy #7: Include a strong purpose statement. Equal Terms claims - Regulatory Purpose Test
  • Cell Comparison "All in the Family"

    Cell Comparison "All in the Family"

    Cell Membrane. The Cell Membrane is likethe mother, she controls what comes in an out of thefamily. She must approve something before it can enter into the family.