Reactor Protection System ACADs (08-006) Covered 1.1.8.4.7 1.1.9.1.3 1.1.9.1.4 5.3.2.7 5.4.3.8 5.4.3.11 Keywords Defense-in-depth, reactor protection system, solid state protection system, reactor trips, Engineered Safety Feature System (ESFAS), Containment Cooling Description Supporting Material OBJECTIVES 1. 2. 3. 4. 5.
State the overall purpose of the Reactor Protection System (RPS). Describe the defense-in-depth features of the RPS. List three main functions of the Solid State Protection System (SSPS). Describe the signals that provide inputs to the SSPS. Describe how the SSPS is designed to satisfy the regulatory requirements for redundancy, independence, and testability. 4 OBJECTIVES 6. Define the term coincidence-logic. 7. State the functions of the three major sections of the SSPS cabinet. 8. Describe the actions that occur to trip the reactor once the coincidence logic is met. 5 Purpose: Reactor Protection System is designed to guarantee the integrity of the 3 fission product barriers. Which reduces the risk to the public during at-power operation and during accident conditions. 6
Defense-In-Depth The plant is designed to provide defensein-depth to prevent the release of fission products to the environment. 1. Reactor Trips 2. Engineered Safety Feature System (ESFAS) 3. Containment Cooling 7 Reactor Trip aka Reactor Scram First level of automatic protection Inserts all of the control rods, which stops the fission process. Once the fission process has been stopped, heat generation from fission stops. However, the core continues to generate heat from the decay of fission products. 8 Engineered Safety Feature System (ESFAS) A safeguards actuation is the next level of defense-in-depth protection. ESFAS is designed to remove decay heat which could cause serious core damage
and the subsequent release of fission products. Safeguards actuation protects the fuel cladding and the Reactor Coolant System. 9 Containment Cooling Last level of automatic defense-in-depth protection. Protects the Containment structure from over pressurization. Containment Spray System inside containment AP1000 uses a passive containment cooling system outside of containment. This over pressurization of containment can be caused by a loss of coolant accident (LOCA) or by a loss-of-secondary coolant accident. 10 Reactor Protection System 11 AY1A 26 VDC
26 V DC energize to ope n ISOLATED METERS POWER SUPPLY LT-459 NSSS NON-ISOLATED CONTROL ISOLATION CABINETS (i.e. PRZR Level Control) B
BISTABLE G S TEST SW ITCH R energize to close TEST 26 VDC From A Y1A TEST de-energize to open NORMAL R NORMAL
MASTER TEST TEST SW ITCH INPUTS INPUT RELAY & INPUT CONTACT de-energize to close G 26 VDC G From A Y1A energize to open Simplified Protection Circuit 12
PT-455 NSSS PROTECTION CABINET CHANNEL 1 iso iso PORV 455 NSSS CONTROL CABINET iso iso IPC Przr Heaters and Sprays PI-455
I II III IV I SSPS TRAIN A II III SSPS TRAIN B IV 13 Main Functions Solid State Protection System (SSPS) receives various inputs and provides the following functions: 1. Generates Reactor trips 2. Generates safeguards actuations Places plant in safe condition by operating various plant components
3. Provides indication MCB trip-status lamps Control room annunciator panel 14 SSPS Input Signals 1. Process Instruments Bi-stable inputs from plant parameters: Press, Temp, Level, Flow 2. Nuclear Instruments Bi-stable inputs from nuclear power levels generated from reactor excore detectors 3. Field equipment valve position, breaker position 4. Main control board (MCB) manual switches, pushbuttons, etc 15 RPS Design Regulations 10CFR50, Appendix A - states design criteria for protection system at nuclear plants. Criteria include:
Redundancy Independence Testability 16 RPS Design Criteria Redundancy Two trains of protection, A and B Multiple channels sensing same parameter Individual channels feed both trains of SSPS Single failure cannot cause loss of protection Coincidence-logic - specific number of multiple channels must indicate tripped in order to generate reactor trip or safeguard functions 17 RPS Design Criteria Independence Channels measuring parameters must be physically and electrically separated (isolated) Some protection channels may be used for
automatic control systems (e.g., pressurizer level control) Protection signals must be isolated from control/indication signals even though sensed by same detector (RTD, D/P cell, etc.) 18 RPS Design Criteria Testability Must be able to test or calibrate channels without losing or causing protection function. A channel failing while another channel in test (tripped) will cause a reactor trip function. Dual-train design allows testing of one SSPS train while other provides protection. Bypass breakers - one breaker in parallel with each reactor trip breaker 19 SSPS Cabinet Major Sections C o n tro l B o a rd D e m u l t ip le x e r 1 In p u t R e la y Channel
I C a rds L o g ic 15V 15V O u tp u t R e la y I P o w e r S u p p ly P o w e r S u p p ly 3 O u tp u t R e la y II 48V Channel II 1 In p u t R e l a y T r a in B C a b in e t L o g ic O u tp u t R e la y I
3 O u tp u t R e la y II 2 48V S p ray Te s t Pa n el In p u t & O u tp u t C o n n e c to r s R e la y 2 T r a in A C a b in e t S e m i- A u to m a tic Test Panel C a rds C o m p u te r D e m u ltip le x e r Panel Channel III
Channel IV O u tp u t R e la y Test Panel Fuse Pa ne l M a s te r R e la y Panel Fuse Pa ne l C ard s In p u t & O u tp u t C o n n e c to r s P o w e r S u p p ly 48vdc P o w e r S u p p ly 15v D a ta C a b l e S y n c C a b le
D a ta C a b le D a ta O R C a b le S y n c C a b le 1) Input Relay Bay input relays controlled by bistables 2) Logic Bay performs coincidence logic conditions 3) Output Relay Bay receives logic signals to control master & slave relays to control plant equipment 20 SSPS Cabinet Input Relay Bay Acts as an isolation device between the various plant inputs and SSPS. Divided into 4 compartments to provide separation between each input channel. Each SSPS input relay bay is supplied from its respective channel 120 VAC power source. 21 AY1A 26 VDC 26 V DC
energize to ope n ISOLATED METERS POWER SUPPLY LT-459 NSSS NON-ISOLATED CONTROL ISOLATION CABINETS (i.e. PRZR Level Control) B BISTABLE
G S TEST SW ITCH R energize to close TEST 26 VDC From A Y1A TEST de-energize to open NORMAL R SSPS Input Relay Bay
NORMAL MASTER TEST TEST SW ITCH INPUTS INPUT RELAY & INPUT CONTACT de-energize to close G 26 VDC G From A Y1A energize to open Simplified Protection Circuit
22 SSPS Cabinet Logic Bay Receives output from the input relay bays and from actuation and reset switches on the MCB Performs coincidence - logic decisions (2/4, 2/3, etc.) 23 SSPS Cabinet Logic Bay Generates Reactor Trip and Safeguards actuation signal. Reactor Trip action: Removes power to undervoltage (UV) coil of reactor trip breaker Reactor trip breaker opens to deenergize CRDMs Safeguards action controls master and slave relays in two output relay bays 24 NIS DRAWER OUPUT
15VDC From 120 VAC Vital Pow er 48VDC 48VDC LOGIC TES TER LOGIC CARDS FIELD CONTACTS CHECK FOR PROPER COINCIDENCE SAFE GUARDS DRIV ER CARD energi z e to o pen 15VDC PERMISSIVES,
MEMORIES, & BLOCKS MULTIPLEXER UNDERVOLTAGE DRIVER CARD 7300 INPUT RELA Y & INPUT CON TACT INHIBIT NORMAL INPUT ERROR INHIBIT SWITCH SSPS LOGIC BAY G CR 101 LED B/U P-1 0 to SR NIS
25 M/G Set M/G Set Reactor Trip Bypass Breaker A Reactor Trip Bypass Breaker B M/G Set Output Breaker Reactor Trip Breaker A Reactor Trip Breaker B Rod Control
Cabinets M/G Set Output Breaker 26 SSPS Cabinet Output Relay Bay Safeguards signal from logic bay energizes master relay. Master relay contact closes to energize slave relay(s). Slave relay contact(s) operate to control various plant components (pumps, valves, etc.) 27 15VDC 48VDC 48VDC LOGIC TESTER LOGIC CARDS CHECK FOR PROPER COINCIDENCE
SAFEGUARDS DRIVER CARD R MULTIPLEXER UNDERVOLTAGE DRIVER CARD MODE SELECTOR SWITCH OPERATE TEST AY1A (BY1B) P-11 & P-12 SIGNAL SLAVE
R PERMISSIVES, MEMORIES, & BLOCKS MASTER RELAYS 48 VDC G 15VDC R 15 VDC ENABLE CS TEST PANEL RELAYS R R
28 Objectives Review 1. State the overall purpose of the Reactor Protection System (RPS). 2. Describe the defense-in-depth features of the RPS. 3. List three main functions of the Solid State Protection System (SSPS). 4. Describe the protection scheme that provides inputs to the SSPS. 5. Describe how the SSPS is designed to satisfy the regulatory requirements for redundancy, independence, and testability. 29 Objectives Review 6. Define the term coincidence-logic. 7. State the function(s) of the three major sections of the SSPS cabinet. 8. Describe the actions that occur to trip the reactor once the coincidence logic is met. 30