GOMS Model on Instructional Design

GOMS Model on Instructional Design

GOMS Model on Instructional Design Prepared By: Rekah Veloo Date:16th Aug 2010 Lecture: Dr. Balakrishnan Muniandy Course Code: QIM 501E Abstract Definition: Instruction Design A systematic development of instructional specifications using learning and instructional theory to ensure the quality of instruction. It is the entire process of analysis of learning needs and goals and the development of a delivery system to meet those needs. Abstract Traditional Approach: A subject is observed in order to record the different task, actions and time is needed to perform a specific task. Result will use to define metrics and to optimize the workflow. Modern Approach: Computer as a mean to deliver instruction, the

task analysis has been redesigned in order to consider human computer factors. Overview :GOMS Model Developed in 1983 by: Stuart Card, Thomas P. Moran & Allen Newell Description of the Model: Kind of specialized human information processor model for human computer interaction observation and predict user behavior. Typically used by software designers. The knowledge and skills that a user must have in order to carry out task on a device or system. (Kieras, 1988) It is representation of how to do it knowledge that is required by a system in order to get intended task completed. Believed applied information processing psychology should be based on task analysis, calculation and approximation. Biography Stuart Card An American researcher and Senior Research Fellow at Xerox PARC

Received a A.B. in physics from the Oberlin College in 1966, and a Ph.D. in psychology from Carnegie Mellon University. In 2000 he was awarded the CHI Lifetime Achievement Award from the Association for Computing Machinery's SIGCHI, Has been one of the pioneers of applying human factors in humancomputer interaction. Thomas P. Moran Distinguished Engineer at the IBM Almaden Research Center near San Jose, California

He founded and has been Editor-in-Chief of Human-Computer Interaction. First CHI Academy members and won ACM SIGCHI's 2004 Life Time Achievement Award In 2003 he was inducted as a Fellow of the Association for Computing Machinery. Allen Newell Researcher in computer science and cognitive psychology at the RAND corporation and at Carnegie Mellon University. He was awarded the ACM's A.M. Turing Award along with

Herbert Simon in 1975 for their basic contributions to artificial intelligence and the psychology of human cognition. Overview : GOMS Model Goals (What the user intends to accomplish) Operato rs (Actions that are performed to get to the goal) GOMS Selectio Methods n Rules (Sequences of

operators that accomplish a goal) (Used when user have more than 1 methods ) Principles Goals Something that the person wants to accomplish. Can be high level (e.g. WRITE-PAPER) to low level (e.g. DELETE CHARACTER) High level goals are decomposable into sub goals, and are arranged hierarchically. Operator Basic perceptual, cognitive, or motor actions used to accomplish goals, or actions that the software allows user to make (e.g. PRESS-ENTER-KEY or CLICKMOUSE). Not decomposable: they are atomic elements in the GOMS model. It is generally assumed that each operator requires a fixed amount of time for the user to execute, and that

Principles Methods Procedures (sequences) of sub goals and operators that can accomplish the goals. E.g: one method to accomplish the goal DELETE-WORD in the Emacs text editor would be to MOVE-MOUSE to the beginning of the word, and PRESS-ALT-D-KEYCOMBINATION (the use-mouse-delete-word method). Another method to accomplish the same goal could involve using the arrow keys to reach the beginning of the word (the use-arrows-delete-word method). Selection Rules Personal rules users follow in deciding what method to use in a circumstance. E.g:"if the word to be deleted is less than 3 lines away from the current cursor location, then use the usearrows-delete-word-method, else use the use-mouse- Execution Time for the the GOMS models can predict the time it will take for GOMS

models can predict the time it will take user to to carry carry out out a a goal goal (assuming (assuming an an expert expert user user user with no mistakes). with no mistakes). This allows allows a a designer

designer to to profile profile an an application application to to This locate bottlenecks, bottlenecks, as as well well as as compare compare different different UI UI locate designs to to determine determine which which one one allows allows users users to to designs execute tasks

tasks quicker. quicker. execute Help System GOMS models are an explicit representation of GOMS models are an explicit representation of expert user activity, they can assist in designing help help expert user activity, they can assist in designing systems and

and tutorials tutorials to to assist assist users users in in achieving achieving systems goals. goals. If the the designer designer has has a a list list of of likely likely user user goals, goals, GOMS GOMS If models can can be be used

used to to verify verify that that a a method method exists exists to to models achieve each each of of these these goals. goals. achieve Functionali ty Coverage Provides the designer with a model of a users behavior while performing well known task, whereby these models can be used for a variety of purposes: Scope & Application GOMS Epistemology Learning involve knowledge acquisition & it

is important to recognize the different sources of knowledge and the epistemology involve. When a person use a system or device, the knowledge is obtained through a sensory experience. Whereby knowledge come from outside the learner and its known through the continuous use of the tool. In GOMS, the interaction between a computer and human being used 3 different stages on memory: perceptual system Model Human Processor (MHP) Model Human Processor (MHP) Receives inputs from the different devices such monitor & speakers Already familiar with the system-> retrieves information from long term memory

Apply the correct methods according to rules Instructional Design Process 1. Choose users goals Objective: Determine what the learners needs to know / accomplish after the instruction. Provide the inputs for training materials which used to analyze the learn ability factors of the system & provide feedback to the system designers to consider a redesign on the user interface. 2. Perform the following recursive procedures: Draft a method to accomplish each goal by simply listing the steps as general or high-level as possible for the current level of analysis and by passing complex psychological process. Check each step and rewrite as needed for conformance to guidelines. (includes checking on method detail & length, consistency in assumptions about users skill level, and that each high-level operator corresponds to a natural goal.) Instructional Design Process

If needed, go to lower level of analysis by changing the higher-level operators, and then provide methods for the corresponding goals. At the bottom all operators are primitives. If they are not , then need to decide whether to provide a methods for performing it. 3. Document & check the analysis List all primitive external operators used, analystdefined operators, assumptions, & judgment call made. Should check the accuracy if the model by executing the methods as carefully as possible. Make sure that the methods procedure the outcomes on the system. 4. Check sensitivity of judgment calls assumptions made during the analysis. and GOMS Variants Several variations of the GOMS model have been proposed to address issues with the original model.

Card, Morn, and Newell GOMS (CMN-GOMS) GOM S Keystroke-Level Model (KLM) Natural GOMS Language (NGOMSL) Cognitive-Perceptual-Motor GOMS (CPM-GOMS) Keystroke-Level Model (KLM) Simplest variant of GOMS KLM model applications : mouse-driven text editors. workstations for directory-assistance telephone operators. space operations database systems. CAD/CAM software.

This model is unsuited to analyzing more abstract tasks such as EDIT-MANUSCRIPT, which involve conditionals and decomposition into sub goals. Example: KLM Describe the task using the following operators K: keystroke, mouse button push P: point with pointing device D: move mouse to draw line H: move hands to keyboard or mouse M: mental preparation for an operation R: system response time Tasks split into two phases Acquisition of task - user builds mental representative. Execution of task - using system facilities Example: KLM Text editing task of searching a Microsoft Word document for all occurrences

of a four-letter word, and replacing it with another four-letter word Description Reach for mouse Move pointer to "Replace" button Click on "Replace" command Home on keyboard Specify word to be replaced Reach for mouse Point to correct field Click on field Home on keyboard Type new word Reach for mouse Move pointer on Replace-all Click on field Total Operation H[mouse] P[menu item] K[mouse] H[keyboard] M4K[word] H[mouse] P[field] K[mouse]

H[keyboard] M4K[word] H[mouse] P[replace-all] K[mouse] Time (sec) 0.40 1.10 0.20 0.40 2.15 0.40 1.10 0.20 0.40 2.15 0.40 1.10 0.20 10.2 According to this KLM model, it takes 10.2 seconds to accomplish this task. CMN-GOMS The original GOMS model proposed by Card,

Morn and Newell (1983) Builds on KLM by adding sub goals and selection rules. This technique requires a strict goal-methodoperation-selection rules structure. Can predict operator sequence as well as execution time. Can be represented in program form, making it amenable to analysis as well as execution. CMN-GOMS Model application: model word processors (Card et. al, 1983) CAD system for ergonomic design(John & EXAMPLE: CMN-GOMS GOAL: DELETE-FILE . GOAL: SELECT-FILE . . [select: GOAL: KEYBOARD-TAB-METHOD . . GOAL: MOUSE-METHOD] . . VERIFY-SELECTION



. . LOCATE-RECYCLING-BIN . . . MOVE-MOUSE-TO-RECYCLING-BIN . . . RELEASE-LEFT-MOUSE-BUTTON] *Selection rule for GOAL: ISSUE-DELETE-COMMAND If hands are on keyboard, use KEYBOARD-DELETE-METHOD, else if Recycle bin is visible, use DRAG-AND-DROP-METHOD, else use DROP-DOWN-MENU-METHOD NGOMSL Natural GOMS Language Builds based on CMN-GOMS by providing a natural-language notion for representing GOMS models. Methods are represented in terms of an underlying cognitive theory known as cognitive complexity theory, or CCT. This cognitive theory allows NGOMSL to incorporate internal operators such as

manipulating working memory information or setting up sub goals. NGOMSL also can be used to estimate the Example: NGOMSL Goal: Move a file into a subfolder in Windows XP Method for accomplishing goal of moving a file using the drag and drop option: Step Step Step Step Step Step Step 1: 2: 3: 4: 5: 6: 7: Locate the icon of the source file on the screen Move mouse over the icon of the source file

Press and keep holding the left mouse button Locate the icon of the destination folder on the screen Move mouse over the icon of the destination folder Release left mouse button Return with goal accomplished Kieras, David (1996). "A Guide to GOMS Model Usability Evaluation using NGOMSL Example: NGOMSL Method for accomplishing goal of moving a file using the cut and paste option: Step 1: Recall that the first command is called "cut" Step 2: Recall that the command "cut" is in the right click menu Step 3: Locate the icon of the source file on the screen Step 4: Accomplish the goal of selecting and executing the "cut" command Step 5: Recall that the next command is called "paste" Step 6: Recall that the command "paste" is in the right click menu Step 7: Locate the icon of the destination folder on the screen Step 8: Double click with left mouse button Step 9: Locate empty spot on screen Step 10: Move mouse to the empty spot Step 11: Accomplish the goal of selecting and executing the "paste" command Step 12: Return with goal accomplished

Selection rule set for goal: Move a file into a subfolder in Windows XP If custom icon arrangement is used Then accomplish goal: cutting-and-pasting. CPM-GOMS Cognitive-Perceptual-Motor GOMS (CPM- GOMS) builds on previous GOMS models by assumed that perceptual, cognitive and motor operators can be performed in parallel. It employs a schedule chart (also known as a PERT chart) to represent operators and dependencies between operators. Example: CPM-GOMS CPM-GOMS model, John & Kieras (1996b.)

Advantage of GOMS The learn ability factors is measured based on the time or effort that it takes to a user to get used to the system and its operation. Includes how easy to remember some operational steps in order o complete a task. Analysis provide quantitative and qualitative information. Training programs and help systems can be built based on the description of the knowledge needed to perform a task, producing a task oriented document. Conclusion GOMS is a model/technique used to analyze the human computer interaction process. It uses not only discover the cognitive model of an user interacting with a system but it also provides the mechanism to estimate learning time, time on task and probability of errors. It also demonstrates that the information processing system plays an important role on

the human computer interaction. Reference Website http://www.cs.umd.edu/class/fall2002/cmsc838s/tichi/goms.htm l http://www.etutors-portal.net/Partners/eTutors-TRANSNET/OL D%20Language%20Folders/Romanian%20Language%20Folder /f1/Folder.2004-02-26.4226/LearningTheories.doc http://tip.psychology.org/card.html http://www.cc.gatech.edu/computing/classes/cs6751_98_fall/ha ndouts/GOMS-Kieras.html http://books.google.com.my/books?id=zOy0duJzDjQC&pg=PA1 11&lpg=PA111&dq=goms+instructional+design&source=bl& ots=BkH0rG_QfP&sig=BbcuVxlyRtGx0K2qoIYHZ3GQ8xU&hl= en&ei=OedlTPLoMsiecaPjgbIK&sa=X&oi=book_result&ct=res ult&resnum=1&ved=0CBgQ6AEwAA#v=onepage&q=goms%2 0instructional%20design&f=false Article: GOMS Theory and its use on the Instructional Design Process, Maricel Medina-Mora.

Recently Viewed Presentations

  • Measure Selection Guidelines

    Measure Selection Guidelines

    Measure Selection Guidelines. Measure Selection Guidelines. Appendix A - Measures must pass cost-effectiveness guidelines and be listed in Appendix A (available on the WAPTAC Web site). Exceptions are made for health and safety measures, which are not subject to SIR...
  • FORCES(Dynamics)


    Non-Contact Forces (no touch) Frictional Force . Gravitational Force . Tension Force . ... In equilibrium, all forces cancel out leaving zero net force. Objects that are standing still are in equilibrium because their acceleration is zero.
  • gpres.weebly.com


    Location of the Caribbean. Greater Antilles: Cuba, Hispaniola (Haiti and Dominican Republic), Jamaica, Puerto Rico. Lesser Antilles: Windward islands: Grenada, St ...
  • Collaboration + Innovation = Immunization Information Systems Success

    Collaboration + Innovation = Immunization Information Systems Success

    RN, BSN Section Manager Outreach & Education Carlene Lockwood Secretary VPD Surveillance Joel Blostein Kyle Enger Rachel Potter AFIX Stephanie Sanchez Barbara Day Karen Goucher Rebecca Taylor Physician Peer Education (MSU) Dawn Contreras Tammy Sullivan Special Populations Carolee Besteman Elizabeth...
  • Teaching new vocabulary - liceoberard.scuole.vda.it

    Teaching new vocabulary - liceoberard.scuole.vda.it

    CLIL Use flashcards, actions or objects Children need to repeat after the teacher (chorally/individually) Voice needs to vary (whisper/loud/high pitch/low pitch) Children can respond in their own way or copy your action Clap out the syllables and stress on words.
  • An Encounter - George Washington High School

    An Encounter - George Washington High School

    Paraphrase Imagery: "Once on the kind of day called "weather breeder", When the heat slowly hazes and the sun By its own power seems to be undone." This develops the setting of the poem by causing the audience to feel...
  • Prezentacja programu PowerPoint

    Prezentacja programu PowerPoint

    formalnie: Narzędzia sztucznej inteligencji (NAI) wprowadzenie w tematykę wykładu Dorota Cendrowska nieformalnie: ??? motto: „Twoje I can jest znacznie ważniejsze od twego IQ"
  • Secretaria De Relaciones Internacionales

    Secretaria De Relaciones Internacionales

    OBJETIVO GENERAL Contribuir a la promoción de la Cooperación Internacional Científico Tecnológica. OBJETIVOS ESPECÍFICOS Institucionalizar un programa específico para incentivar la presentación de proyectos en el marco de convocatorias bilaterales y multilaterales a cargo del MINCyT.