Apresentação do PowerPoint

Apresentação do PowerPoint

MVI56-AFC Training Prosoft Technology ProSoft Technology, Inc. is a US company based in Bakersfield, CA specializing in the development of communication products for industrial automation. Distribution, support and services are supplied worldwide by regional offices and an extensive distribution network. Prosoft Technology ProSoft Technology, Inc is headquartered in

California, with 8 regional sales offices: four in North America (Western, North Central, Southern and North Eastern), one in Latin America, one which includes Europe, Middle-East and Africa, one in Asia, and a new region encompassing Australia and New-Zealand. Our products are distributed and supported through a wide distribution network of more than 250 distributors worldwide. Prosoft Technology Prosoft Technology

Solutions for the following platforms: SLC (MVI46) Controllogix (MVI56) PLC (MVI71) FLEX (MVI94) Quantum (PTQ) StandAlone (Prolinx) Prosoft Technology Some of the Solutions:

Modbus Modbus Plus Modbus/Ethernet DF1 DF1/Ethernet IEC 60870-5-101 IEC 60870-5-103

IEC 60870-5-104 Flow Calculation Flow Calculation Solutions MVI46-AFC for SLC Platform MVI56-AFC for CLX Platform MVI71-AFC for PLC Platform MVI56-AFC What is the MVI56-AFC? Flow Computer in a CLX rack Calculates Flow Rate & Volume Supports Pulse & Orifice Meters

Supports up to 16 meters per module Supports Gas & Liquid Automatically Generates Archives Event Log Supports Modbus MVI56-AFC The MVI56-AFC uses the following standards: AGA3 (Orifice Meters) AGA 7 (Pulse Meters) AGA 8 (Compressibility) API Chapter 21.1 (Liquids)

Example Pulse Meter MVI56-AFC CONTROLLOGIX INPUT VARIABLES Temp, Pressure, Pulse Count, Frequency CALCULATION RESULTS Flow Rate, Volume, Archives, etc.. HIGH SPEED

COUNTER Pulse Count ANALOG IO Temperature Pressure Example Orifice Meter MVI56-AFC CONTROLLOGIX

INPUT VARIABLES Temp, Pressure, Differential Pressure CALCULATION RESULTS Flow Rate, Volume, Archives, etc.. ANALOG IO Temperature Pressure Differential Pressure

AFC Manager The AFC Manager is a software for Windows that provides an easy interface between the module and the user. PC MVI56-AFC Null modem cable AFC Manager The AFC Manager allows: Application Parameters Configuration (Site Configuration)

Meter Configuration Meter Monitor Alarm Monitor Archive Monitor Event Monitor Meter Audit Modbus Master Interface AFC Manager The configuration file generated by the AFC Manager is saved as a .AFC file. The .AFC file can be downloaded or uploaded between the PC and the module (Total Transfer)

The user can also use the Read or Write buttons to transfer data for each window (Partial Transfer). A configuration file can easily be converted between the MVI46-AFC and MVI56-AFC modules MVIxx-AFC LEDs MVIxx-AFC LEDs APP STATUS OFF ON = OK

= At least one meter has an alarm and/or all meters are disabled BLINKING = Processor is Offline (program mode) BP ACT, P1, P2, P3 ON OFF = Modbus or AFC Manager command for the module is recognized = No Activity BBRAM LEDS

OK ON & ERR ON = Initialization Status OK ON & ERR OFF = Normal Operation OK BLINKING & ERR OFF = Checksum Error / Refer AFC Manager MVI56-AFC - Initialization 1) Change the processor mode to run 2) Enable (at least) one meter 3) Move the Date and Time data from the processor. Obs: Step 3 must be repeated after every power cycle

Configuration INTRODUCTION Site Configuration Modbus Address Configuration Modbus Pass-Thru Configuration Archive Period Configuration Site Options Firmware Version Meter Configuration Meter Configuration The Meter has to be disabled to change Meter Type/Product Group or Units

Once the meter type or product group is selected, the software automatically displays the specific parameters A meter configuration can easily be copied to other meters Pulse Meter Configuration Pulse Meters - Introduction A pulse meter requires a high speed counter to transfer pulses to the module The module will consider each pulse count increment to add a volume amount to the accumulator The meter uses a direct correlation between number of pulses and volume called K-Factor Example :

K-Factor = 100 pulses/cubic feet Means that 100 pulses is equal to 1 cubic feet Pulse Meter - Configuration Pulse Meters - Introduction Pulse Count Volume Pulse Frequency

Flow Rate Pulse Meter - Configuration Pulse Meters - Introduction The module uses the following formula to increment the volume: Gross Vol Incr = [Pulse Count Incr] * MeterFactor KFactor Pulse Meter - Configuration

Pulse Meters - Introduction As time goes on the actual measured volume (the "gross volume") will tend to drift from the nominal measured volume (the "indicated volume"). The factor that corrects "indicated" to "gross" is called the "meter factor", and is a number very close to 1. The Meter Factor usually depends on the Flow Rate. The user may configure up to 5 Meter Factor points to be interpolated, depending on the Flow Rate Pulse Meter - Configuration Pulse Meters - Introduction Meter Factor Configuration

Meter Factor 1.02 1 0.98 0.96 0.94 0.92 0.9 0.88 0.86 0.84 00 18

Meter Factor 00 16 00 200 14 1 00 10

Pulse Meter - Configuration Pulse Meters - Introduction Stream Options The calculations described up to this point are those recommended by API and performed by the vast majority of users of linear meters. Some users, however, may prefer to keep the meter factor at exactly 1.0000 and periodically adjust the K-factor with a meter prove -and then the K-factor may depend on the flow rate. Pulse Meter - Configuration

Pulse Input Rollover The module considers a rollover when the current pulse count is less than the previous one. In this case, it will use the following formula to re-calculate the pulse input: Pulse Count = (Current Pulse + Rollover Value) Previous Pulse Ex: For a pulse input rollover value of 32767. Consider the following sequence of pulses: 32700, 32750, 30, 50 The module would use the following value for pulse input on the next transition: (32767+30)-32750 = 47 Pulse Meter - Configuration

Pulse Input Rollover Jumps in the Accumulator value typically happens when the pulse count is set to zero or the user has configured a wrong pulse input rollover value In this situation the module thinks that a rollover has occurred and add the remaining pulse amount to rollover Orifice Meter - Configuration Orifice Meters - Introduction Requires tube and orifice diameters configuration

The static pressure of the gas stream may be measured either upstream of the meter (before the differential pressure drop), or downstream of the meter (after the pressure drop). Both AGA3 and AGA8 require the upstream static pressure for their calculations, where: upstream pressure = downstream pressure + differential pressure If the pressure is measured from a downstream tap (typical), this parameter must be checked.

Orifice Meter - Configuration Orifice Meters Introduction DP Flow Threshold (kPa) If at any time the differential pressure input value is less than the DP Flow Threshold parameter, the MVI module will consider the differential pressure as zero (no flow). DP Alarm Threshold (kPa) If at any time the differential pressure input value is less than the DP Alarm Threshold parameter, the MVI module will flag a Differential Pressure Low alarm. Note that this alarm is different than the one the module would flag if the differential pressure would be out of range (Input Out of Range:

Differential pressure). Gas Product - Configuration Gas Product Once gas is selected as the product for the meter, the user may enter the molar concentrations for the elements. The module uses the Detailed Characterization Method that requires all molar concentrations (21 elements). The molar concentrations can be supplied through: - AFC Manager (static) - Ladder Logic (dynamic w/ Chromatograph device) 1 - External Modbus Device (dynamic w/ Chromatograph device) 1 Set Ctrl OptionsTreat Analysis as Process Input parameter to disable

the generation of events. 1 Gas Product - Configuration SUM CONCENTRATIONS Calculate Flow Rate (100% - T) < S < (100% + T) N

ALARM! Analysis Total Not Normalized Y S=0 ? N

Y ALARM! Analysis Total ZERO T = Normalization Total Error Tolerance Liquid Product - Configuration Liquid Product Liquid Selection (Both API2540 Standard)

CRUDE/LPG Standard Uses the base, "A", and "E" tables 23/24/53/54 Application Propane, butane, NGLs (natural gas liquids), and crude oils REFINED PRODUCTS Standard

Uses the "B" tables 23/24/53/54 Application Gasoline and jet fuels (Both selections uses the same input process variables) Liquid Product - Configuration - The ladder logic must move the Water % value for Net value calculation - Density at flowing conditions is required. This value may be either provided directly as a process input, or the AFC may calculate it from the frequency output of a densitometer.

- Default Relative Density parameter = Specific Gravity Liquid Product - Configuration Densitometer Obs: The input scaling for density should be configured as 4-20mA. The densitometer frequency (Hz) should be moved instead of density Period Time (s) Frequency (Hz)

Expected Density (kg/ m3) Calculated Density (kg/m3) 1429.959 699.321 1000

999.9932 1459.109 685.350 1100 1099.858 Where T= 20C, P = 47.6 kPag

Meter Configuration If the Input Value is not within the configured range, the module will flag an Input Out of Range alarm In this case, the module will perform flow calculation using the configured DEFAULT value Meter Configuration The Input Values read by the module may be viewed in the meter monitor window. Using the Calibration feature forces the module to ignore changes in the process input variables.

Meter Configuration Input variables may be entered as: Floating Point Use Floating Point format in ladder logic Ex: 13.42 => T = 13.42 C Scaled Integer Use Double Integer format in ladder logic Ex: 1342 => T = 13.42C Ex: 200 => P = 200Kpag Ex: 35142 => DP = 35.142 4-20mA

Use Double Integer format in ladder logic Ex: T,P and DP => 13107 (0%) / 65535 (100%) Meter Monitor - Accumulator What is the difference between Gross Accumulator and Net Accumulator? GAS Module Calculates Volume Gross

Accumulator Converts to Reference Temperature and Pressure Gross Standard Accumulator Net Accumulator

LIQUID Module Calculates Volume Gross Accumulator Converts to Reference Temperature and Pressure Gross

Standard Accumulator Net Accumulator Subtract Water Amount Meter Monitor - Accumulator There are two accumulator types : Resettable Accumulators

The Resettable Accumulators can be reset through: 1) AFC Manager 2) Archive Period End 3) Ladder Logic Non-Resettable Accumulators Both types will be reset when the Accumulator Rollover Value is reached. Meter Monitor - Accumulator The accumulators are represented as Totalizer and Residue values: ACCUMULATOR 1201.8613

TOTALIZER 1201 Obs: The Totalizer is represented as Double Integer data (32 bits) RESIDUE 0.8613 Obs: The Residue is represented as Floating Point data (32 bits) The Residue is always less than 0 Meter Monitor Scan Count Using the Meter Monitor window, the user may

monitor the backplane scan count and the calculation scan count: Backplane Scan Count Calculation Scan Count Meter Monitor - Wallclock Using the Meter Monitor window, the user may also monitor the WallClock date and time information. The WallClock should be transferred from ladder logic. IMPORTANT: The module will not perform

calculation until it receives a valid date and time information from the processor. Meter Monitor - Log The user may save the Meter Monitor results as a log file or csv file for Excel. The user may also print the log file to the local printer. Audit Scan An Audit Scan snapshots input values, intermediate calculated values, and output results for each of a short series

of calculation scans for a single meter. This allows an auditor to rigorously verify the calculations performed by the AFC on live in-service production meters. The Audit Scan can be viewed as snapshots of the process Steps: 1- Select the meter number 2 Select the number of audit scans 3 Click on Read to start audit scans 4 Click on Details for the calculation results 5- Save the log/csv file or send the results for the local printer Archives The module supports the archiving of data for each meter

channel. The archives are periodically generated according to the period duration defined in the Site Configuration. Hourly Archives 48 Archives per meter Daily Archives 35 Archives per meter Archives Archive Generation (6 steps) - Step 1 Archive 1 Data A

(Yesterday) Archive 2 Data B (2 days ago) () Archive 35 Data Z (35 days ago) Archives

- Step 2 Period End New Archive Created ! Archives - Step 3 Archive 1 (Yesterday) Archive 2 Data A (2 days ago) ()

Archive 35 Data Y (35 days ago) Archives - Step 4 Data Z Archive Deleted (Previous Last Archive) ! Archives - Step 5 Archive 1 New Data (Yesterday)

Archive 2 Data A (2 days ago) New Archive Included ! () Archive 35 Data Y (35 days ago)

Archives - Step 6 Reset Accumulators ! (if configured) Archives In order to configure the archive generation use words Mh00341 (daily) and Mh00421 (hourly). User interface is coming soon! Bit 00 period select, hourly Bit 01 archive upon period end Bit 02 archive upon event Bit 03 Reserved Bit 04 reset resettable accumulator 1 upon period end

Bit 05 reset resettable accumulator 2 upon period end Bit 06 reset resettable accumulator 3 upon period end Bit 07 reset resettable accumulator 4 upon period end Bit 08 reset resettable accumulator 1 upon event Bit 09 reset resettable accumulator 2 upon event Bit 10 reset resettable accumulator 3 upon event Bit 11 reset resettable accumulator 4 upon event Bits 12 to 15 Reserved The default value is set for archive upon period end and archive upon event : Mh00341 = 6 Mh00421 = 7 Archives

Example: Configure Meters 1 through 3 to generate daily archives upon period end (only) and to reset all accumulators upon period end. 1) Using the Modbus Master interface, read word 8341 from the Primary Slave. 2) Replace the default value by a value of 3) Write the new value 4) Repeat steps 1 to 3 for Meters 2 and 3. For these meters the following values should be used: Meter 2 = 10341 Meter 3 = 12341 Archives The archives can be accessed through: - AFC Manager Display

- AFC Manager Log File - AFC Manager CSV file (for Microsoft Excel) - Local Printer - External Modbus master device Archives The archives can be accessed through: - AFC Manager Display - AFC Manager Log File - AFC Manager CSV file (for Microsoft Excel) - Local Printer - External Modbus master device

Events An event is any occurrence that may affect the manner in which, or whether, measurement is performed. Events include: - any change to a sealable parameter - power-up (product may have been lost during the power-down period) - change in PLC operating mode (programming changes may alter measurement) Events Events are stored as a circular file The module stores up to 1999 events

Event 1 Event 1999 Event 2 Event 1998 Event 3 ()

Events What happens when the event buffer is full? If all record positions contain events that have not yet been downloaded, the log is full. In this case, the handling of a new event depends on the value of the "Event log unlocked" site option: Option Set Option Clear Module will overwrite the

oldest event with the new one Module will reject new events (including configuration changes) Events How to use the Event Interface?

1) Click on the Read Button 2) Note the Number of Events to be Downloaded 3) Click on Download 4) Save the Events as a Log File (or CSV) 5) Click on Purge to delete all events Events Understanding the Event Codes In order to use the available memory in the AFC Manager as efficiently as possible, the events are grouped and coded in a specific format before they are

logged. The event codes are displayed as shown: Group/Subgroup/Item Events Understanding the Event Codes Examples: Mtr1 9/1/0 = means that Meter 1 Orifice plate measured diameter has changed. Mtr 2 4/0/1 = means that Meter 2 Input Scaling Temperature (High) has changed. Ladder Logic

The ladder logic allows the processor to request specific tasks to the module. These tasks include: Set the Wallclock Write the Process Input Variables Read the Calculation Results Transfer the Molar Analysis Data (Gas Only) Enable or Disable a Meter Write an Archive Reset an Accumulator Read/Write from the Primary or Virtual Slaves Modbus Pass-Thru Ladder Logic

How does the ladder logic works? Send Output Block (250 words) Read Input Block (248 words) Ladder Logic Output Block Structure 0 Sentinel (Transaction Number)

1 Output Block Length (<=245) 247 Anchor (Transaction Number) Ladder Logic Input Block Structure 0

Sentinel (Transaction Number) 1 Output Block Length (<=245) 247 Site Status 248

Meter Alarm 249 Anchor (Transaction Number) Obs: Output Block Length is negative if formatting error is present Ladder Logic - Example Output Block 1 1 1

Input Block 1 1 1 Output Block 2 2 2 Input Block 2 2 2 Ladder Logic

In order for the processor to request specific tasks to the module it uses Function Blocks. Typical Output Function Block (OFB) Block ID (Function/Mtr/Length Obs: For the OFB Block ID Bit 8 set to 1 = AFC skips returning the input Bit 9 set to 1 = AFC ignores the received output Typical Input Function Block (IFB)

Block ID (Function/Status) Ladder Logic Example: Meter Process Input Variables Block A value of 8193 (0010000000000001) would send a Meter Process Input Block to the module Ladder Logic The process block depends on the meter type and product group Ladder Logic

The process block depends on the meter type and product group Ladder Logic The process block depends on the meter type and product group Ladder Logic The process block depends on the meter type and product group Ladder Logic

The Function Blocks are assembled into the Input and Output Blocks Ladder Logic WallClock Input Process Variables Mtrs 1 to 16 Enable/Disable Function Blocks Send Output Block (250 words) 1 1

Read Input Block (248 words) 1 1 Sample Ladder Logic The Sample Ladder Logic continuously uses 2 Block Structures Process Block (Block Ids 1 to 16) - Meter Process Variables - Molar Analysis

- Enable & Disable Meters - Read Meter Profile (Meter Type and Product Group) Modbus Block (Block Ids 17) Modbus Support CLX MVI56-AFC Modbus Master Device 1 Modbus Master

(Pass-Thru) Device 2 4 3 Modbus Gateway Modbus Master Command Modbus Slave Device

Modbus Support The module has an internal modbus database called Primary Modbus Slave. It contains: 65535 Holding Registers 65535 Input Registers The addresses are fixed according to the Modbus Slave Ex: Meter 1 Orifice Diameter is located at addresses 8162 and 8163 Modbus Support The Mh terminology refers to Meter Relative. It informs the user the correct offset in a given Meter

range. Each meter occupies 2000 holding registers: Meter 1 = 8000 to 9999 Meter 2 = 10000 to 11999 Meter 3 = 12000 to 13999 etc Modbus Support The module offers 2 Modbus Slaves: Primary Modbus Slave & Virtual Modbus Slave The Virtual Modbus Slave is used to optimize the data polling. It allows the user to group only the data it is going to be polled.

Modbus Support Modbus Support Modbus Support The same idea can be applied when polling data through the backplane The user has to configure a Modbus Slave Address greater than zero in order to activate the Virtual Slave. Initialize BBRAM Write the following values to holding address 0 55AA

A5A5 55AA 4635 WARNING: ALL DATA WILL BE LOST!!!

Recently Viewed Presentations

  • Memorial - PBworks

    Memorial - PBworks

    This poem is an elegy, a poem or song that is a lament for the dead, for a beloved person in MacCaig's life. That person is probably MacCaig's sister, Frances, who died in 1968 as this poem was published in...
  • Literacy Toolkit The Literacy Hub Using Success Criteria

    Literacy Toolkit The Literacy Hub Using Success Criteria

    This is one of three sets of success criteria - group discussion, solo talk and non-fiction writing. The group's task is to evaluate the criteria and judge whether they are fit for purpose: - do they describe success in a...
  • Αξιοπιστία Εργαστηριακού Αποτελέσματος.

    Αξιοπιστία Εργαστηριακού Αποτελέσματος.

    Χάρτες Levey-Jennings Τα κριτήρια ελέγχου Westgard Τα κριτήρια ελέγχου Westgard ερμηνεύουν με τον καλύτερο τρόπο την διακύμανση των σημείων ελέγχου πάνω σε ένα διάγραμμα Levey-Jennings.
  • A.P. Chemistry

    A.P. Chemistry

    For example: if a solution of NaF and HF are mixed together, F- would be the common ion. If we look at the dissociation of each compound-NaF Na+(aq) + F-(aq) HF(aq) H+(aq) + F-(aq) According to LeChatelier's Principle, an increase...
  • Baker TillyEstate and Trust Conference 2018Leaving ... - Cozen

    Baker TillyEstate and Trust Conference 2018Leaving ... - Cozen

    Baker TillyEstate and Trust Conference 2018Leaving Business Assets to Charities. Helene S. Jaron. Vice Chair, Private Client Services ... If a private foundation engages in an act of self-dealing, there is a penalty tax, a tax on the foundation manager,...
  • Challenging Standards/ NY 2016.key - S/CDN

    Challenging Standards/ NY 2016.key - S/CDN

    Organizational Development: Designing an Educational Infrastructure. Behavior: • • build ties/relations among staff. build connections beyond the schoolhouse. procure. resources. handle disturbances • • Norms: de-privatize classroom practice
  • Re-imagining the possible: a new electronic article delivery

    Re-imagining the possible: a new electronic article delivery

    Concordia University has two libraries - Webster Library (downtown) and Vanier Library (in NDG). For many years, the Libraries offered a print-based journal article photocopy and delivery service. Patrons could request that an article be copied and sent to them...
  • Comment inclure la sécurité dans vos appels d&#x27;offre

    Comment inclure la sécurité dans vos appels d'offre

    Description de la session. Quelles sont les exigences que vous devez inclure dans vos appels d'offre pour que la solution retenue ne devienne votre talon d'Achille sécuritaire ?