Transcription

einissubjecttospecificwrittenapprovalfromCIRA

TECHNOLOGICAL EFFORTS FOR FUTURE ROTORCRAFTOUTLINEPast,PresentandFutureofRotorcraft Motivationsbehindourrotorcraftactivities RecentR&Tactivitiesdedicatedtorotorcraft Aerodynamics Aeroacoustics ActiveRotorTechnologies IcingWindTunnel bjecttospecificwrittenapprovalfromCIRA2

PAST,PRESENT AND FUTURE OF ROTORCRAFTChallenges  to  be  tackled  for  Future  RotorcraftØ ableØ tizen’sdemandforasaferandmoresecuresociety;Ø gerairtraveldemandthatisforeseenforthefutureØ Ø ovalfromCIRA3

PAST,PRESENT AND FUTURE OF ROTORCRAFTV/STOL  Aircraft  and  Propulsion hereinissubjecttospecificwrittenapprovalfromCIRA4

PAST,PRESENT AND FUTURE OF ROTORCRAFTFast  Rotorcraft  ConceptsSikorsky/BoeingSB- ‐1BellV- AgustaWestlandNextGen ereinissubjecttospecificwrittenapprovalfromCIRA5

TECHNOLOGICAL EFFORTS FOR FUTURE ROTORCRAFTSWhat  motivates  CIRA  rotorcraft  activities Maintainhighestlevelofknow- ‐howSupportAgustaWestland’s l ecttospecificwrittenapprovalfromCIRA6

TECHNOLOGICAL EFFORTS FOR FUTURE ROTORCRAFTSCIRA  Rotorcraft   R&T 7

TECHNOLOGICAL EFFORTS FOR FUTURE ROTORCRAFTSRecent  R&T  activities  dedicated  to  rotorcraft Aerodynamics/DesignOptimization§ § § § Aeroacoustics§ § § Tilt- nenvironmentActiveRotorTechnologies§ ightBladePlanform A8

AERODYNAMICS /DESIGN OPTIMIZATIONRotor  Blade  optimization  for  extended  natural  laminar  flow  inforward  flight An  example  of  CIRA  competences  inairfoil design  optimization  (wellconsolidated  for  fixed- wing)  applied  to  arotor  blade  design  process. The  activity  was  performed  within  CleanSky  JTI  Green  Rotorcraft  ITD,  GRC1“Innovative  Rotor  Blades”  project,  for  thedevelopment  of  “passive”  technologies  toreduce  rotor  power. Flow  laminarity is  a  means  for  reducing  the  total  power  required  by  a  rotoralthough  the  promotion  of  flow  laminarity on  a  helicopter  rotor  is  an  extremelychallenging einissubjecttospecificwrittenapprovalfromCIRA9

AERODYNAMICS /DESIGN OPTIMIZATIONRotor  Blade  optimization  for  extended  natural  laminar  flow  inforward  flight  (cont.)4 Design   Constraints: Geometrical:  leading   edge  radius  and  airfoilthickness Aerodynamic:  limits  to  the  negative  Cm4 Design   Variables: 64  shape  modes  for  each  airfoil4 Design   Points: 8  spanwise airfoil  locations  and  7  azimuthallocations.4 Design   Objectives: Single- Objective  /  Multiple- Objective  GeneticAlgorithm  optimizations;; Target:  Quadratic  penalties  introduced   at  eachdesign  point  if  local  drag  coefficient  is  increased  bymore  than  3%  (wrt baseline  value);; Explicit  satisfaction  of  maximum  thickness  constraintvia  airfoil  scaling  after  any  shape IRA10

AERODYNAMICS /DESIGN OPTIMIZATIONRotor  Blade  optimization  for  extended  natural  laminar  flow  inforward  flight  (cont.)The  Design   LoopDrag  reductionMOGA  OptimizationOptimized hereinissubjecttospecificwrittenapprovalfromCIRA11

AERODYNAMICS /DESIGN OPTIMIZATIONBlade  Planform Optimization  for  a  Dual  Speed  Rotor  Concept Study  of  a  DSR  for  the  power   reduction  andnoise  abatement   of  a  medium- size  helicopterrotor  (100%RPM- 90%RPM) Multi- disciplinary,  multi- objective  designoptimization  procedure Optimization  of  the  blade  planform by  varyingsectional  chord,  local  sweep   angle  and  localtwist  angle   in  5  radial  station  and  4  flightconditions Tools:  FlightLab    OptydB  (in  house  FW- H)   a  Fast  Rotor  Noise  (FRN) einissubjecttospecificwrittenapprovalfromCIRA12

AERODYNAMICS /DESIGN OPTIMIZATIONHelicopter  tail  plane  optimization  by  taking  into  account  rotorwake  effect§ Airfoil  and   planform design§ Use  of  genetic  algorithm§ An  important  drag  reduction  has  been   obtainedØ The  drag  reduction  is  more  evident   when  the  rotor  istaken  into  accountØ About  11%  rotorcraft  drag  reduction  in  cruisecondition   was hereinissubjecttospecificwrittenapprovalfromCIRA13

AERODYNAMICS /DESIGN OPTIMIZATIONFuselage  drag  reduction  through  Active  Flow  Control  systems§ Helicopter  fuselage  drag  reduction§ Flow  control  devices  (unsteadyblowing,  SJ)  simulation  and  test§ Small  and  medium  scale  WT  test§ CFD  simulation  (URANS  and  DES)§ WT  test  are  in  progress  and  will  beused  both  for  CFD  validation  and  flowcontrol  device rovalfromCIRA14

AEROACOUSTICS /FLIGHT PROCEDURES FOR NOISE REDUCTIONTilt- Rotor  noise  impact  assessmentDevelopment   of    a  numerical   noise  characterization  of  theERICA  Tilt  Rotor  configuration:§ To  study  and  to  evaluate   the  integration   of  the  tilt- rotor   inthe  context  of  the  European  Air  Traffic  Management   System§ To  develop  a  procedure  for  evaluating   the  noise  emitted   bya  tilt- rotor   during   a  complete   operation,   including   take  offand  landing,   by  mean   of  the  FAA’s  INM  and/or  HELENAcomputational   tool.§ Proprotor- Wing- Fuselage   Interactional  Aerodynamic   Effects§ HELENA  noise  hemisphere   database   to  allow   therepresentation   of  a  generic   flight 5

AEROACOUSTICS /FLIGHT PROCEDURES FOR NOISE REDUCTIONEnvironment  friendly  rotorcraft  flight  pathInnovation &HMISimulationHSDDesignofaLowNoiseAlgorithm (LNA)fortheautonomouson- vironmentfriendlyrotorcraftflightpathBareheloFMSim IAS Bank LTITUDE,  ft§ al- ‐timeon- oceduralconstraints(JUFUDP)DISTANCE,  ftSPEED,  kn§ DevelopmentofaFastNoiseNumericalTool fortheon- provalfromCIRA16

AEROACOUSTICS /FLIGHT PROCEDURES FOR NOISE REDUCTIONCommunity  noise  simulation  in  an  urban  environmentOne  of  the  emerging   problems  in  helicopter  operations   in  urban  areas  is  the  prediction  of  thenoise  impact  on  buildings  and  its  indoor  transmission.It  is  well  recognized  that  low  frequency  and  impulsive  noise  has  a  higher  psychological  impacton  the  majority  of  the  population   compared   with  higher   frequency  noise  of  equal   loudness.HENCEIt  is  important  to  predict  the  near- field  fuselage  noise  scattering  effects  and  the  far- field  wavereflections  due  to  buildings.ChimerasurfaceFW- HThe  coupled  FW- H/FEM  model   requires  that  thenoise  generated   by  the  rotor  be  computed   at  allpoints  on  the  fuselage  and  on  the romCIRA17

AEROACOUSTICS /FLIGHT PROCEDURES FOR NOISE REDUCTIONCommunity  noise  simulation  in  an  urban  environmentNoise  print  on  a  setof 18

ACTIVE ROTOR TECHNOLOGIESActive  Gurney  Flap  for  Dynamic  Stall  alleviationDynamic  stall  is  a  complex  non- linear   unsteadyaerodynamic   phenomenon.   It  can  lead  to  violentvibrations  and  dangerously   high  loads  and  it  candetermine   performance   and  operational   limits CIRA19

ACTIVE ROTOR TECHNOLOGIESActive  Gurney  Flap  for  Dynamic  Stall  alleviation  (cont.)§ AGF  2D  unsteady  aerodynamic  design§ AGF  control  law  design   for  the  reduction  of  power,control  loads  and  vibration  while  preserving  rotorcrafthandling   qualities.§ Wind  Tunnel   test  campaign   of  an  oscillating  bladesection  equipped   with  an nissubjecttospecificwrittenapprovalfromCIRA20

ACTIVE ROTOR TECHNOLOGIESActive  Gurney  Flap  for  Dynamic  Stall  alleviation  (cont.)A Pitching Oscillating System was designed and manufactured to characterize the AGFconcept in WT.The oscillating device, the test article and the AGF system as well as the WT setup weredefined considering technical parameters (Blade size, rotor speed, Mach and Reynoldsnumbers) of a medium- ‐size helicopter (NH- ‐90 inissubjecttospecificwrittenapprovalfromCIRA21

ACTIVE ROTOR TECHNOLOGIESActive  Gurney  Flap  for  Dynamic  Stall  alleviation ereinissubjecttospecificwrittenapprovalfromCIRA22

MAIN FACILITIESIWT– ICING WIND TUNNEL Goal:  Simulate  the  flight  conditions  requested   for  icecertification. Use:  Test   ice  protection  systems   and  ice  accretion  effects   onflight  safety Operational since  2003 Max  speed:    Mach  0.7 Max  test  duration:  4  hours 3  Test  Sections:  2.35x1.15m  - 2.35x2.25m  - 2.35x3.60  m Calibration according  to  international  standard RA23

IWT– ICING WIND TUNNEL§ NH90 Air Intake T700/T6E1 Icing Qualification Tests,IWT, 2003§ NH90 Main Rotor Blade Icing Qualification Tests,IWT, 2004§ ALH- 02 - Variable Speed Hydro Drive Tail Rotor, IWT,2007§ MJ615 – Research project aimed at investigating theMain Rotor Blade electricalperformance, IWT, 2011deicingsystem§ Inlet icing certification tests for non- Europeanhelicopter manufacturer, IWT, 2012§ MJ392 – Research project aimed at investigating theMain and Tail Rotor Blades electrical deicing systemperformance, IWT, issubjecttospecificwrittenapprovalfromCIRA24

bjecttospecificwrittenapprovalfromCIRA25